Atom
ATOM
Helyum atomunun orantılı bir gösterimi. Elektron bulutunun koyuluğu 1s elektron orbitalinin olasılık fonksiyonu üzerinden alınmış bir "görüş çizgisi" integraline karşılık gelmektedir. Büyütülmüş resimdeki çekirdek şematiktir ve protonlar pembe, nötronlar ise mor ile gösterilmiştir. Gerçekte, çekirdeğin (ve her bir nükleonun) dalga fonksiyonu küresel simetriye sahiptir (ancak, daha karmaşık çekirdekler için durum farklıdır).
Sınıflandırma
Bir elementin en küçük bölümü


Özellikler
Kütlesi

≈ 1.67 × 10-27 kg (H) ~
≈ 395.13 × 10-27 kg (U)

Çapı
25 pm (H) ~ 260 pm (Cs)

Elektrik yükü
Sıfır (eğer atomdaki elektronların sayısı protonlarınkine eşitse)


Kimya veya fizikte atom, veya öge, bir kimyasal elementin özelliklerini koruyan en küçük parçacığıdır.
Sözcük Yunanca ατομος veya atomostan gelir, 'bölünemez' demektir. Eski Yunanistan'da bazı düşünürlere göre atom maddenin bölünemez en küçük parçasıydı. Modern kullanımdaki atomlar ise atomaltı parçacıklardan oluşur:
• elektronlar, eksi yüklüdürler ve bu üçünün arasında en hafifidir.
• protonlar artı yüklüdür, kütleleri elektronunkinin yaklaşık 1839 katıdır.
• nötronlar yüksüzdür, onların da kütlesi elektronunkinin yaklaşık 1839 katıdır.
Proton ve nötronlar beraberce atom çekirdeğini oluştururlar; bu parçacıklara nükleon da denir. Elektronlar çekirdeğin etrafında, ondan çok daha büyük olan elektron bulutunu oluştururlar.
Atomlar, içerdikleri atomaltı parçacıkların sayıları ile birbirlerinden farklılık gösterirler. Aynı elementin atomları aynı sayıda protona sahiptirler, bu sayıya atom numarası denir. Buna karşın, aynı elementin atomları farklı nötron sayılarına sahip olabilir, bu sayılar o elementin izotoplarını belirler. Proton ve nötronlara kıyasla elektronlar atoma daha zayıf güçlerle bağlı olduklarından elektron sayısı kolaylıkla değişebilir. Çekirdekteki proton ve nötron sayısı da nükleer fisyon, nükleer füzyon ve radyoaktif bozunma yoluyla değişebilir, bu durumda atom başka bir elemente dönüşebilir.
Atom kavramı maddenin fiziksel özelliklerini anlatmaya yarayan çeşitli teoriler tarafından kullanılır. Atomlar kimyanın temel yapı taşlarıdır ve kimyasal reaksiyonlarda Maddenin Korunumu Kanunu gereği korunurlar.

Tarihçe
Bugün kullandığımız anlamda atom kavramını ilk kez ortaya atan düşünürler Leukippos ve Demokritos'dur. Bu düşünürler doğada mevcut her maddenin, fiziksel olarak bölünmeyen atomlardan oluştuğunu ifade etmişler, ayrıca atomlar arasında boş uzay bulunduğunu ve devinim halinde olduklarını belirtmişlerdir.
Aristoteles'in (M.Ö. 384-322) maddeye bakışı, kendinden önce yaşamış olan filozoflara olan tepkisini ifade eder. O, Empedocles'in düşüncesine katılmış ve her şeyin dört ana maddeden yapıldığını savunmuştur.
Bu dönemi izleyen çağlarda bu düşüncelere bir ilave yapılmadı, ilk kez 19. yüzyılda John dalton modern atom kavramını ortaya attı. Dalton, kimyasal reaksiyonlarda maddenin tam sayılarla belirlenen oranlarda tepkimeye girdiğini gösterdi ve maddelerin atom denen sayılabilir ama bölünemez parçalardan yapıldığını ifade etti. Buna ek olarak, atomların ağırlıklarını ortaya koyan bir çizelge hazırladı.
J.J. Thomson 1897 yılında elektronu keşfetti. 1900'lü yılların başlarında Ernest Rutherford günümüz atom modelinin temelini teşkil eden yapıyı ortaya koydu: atomun, kütlesinin büyük bir kısmını oluşturan bir çekirdek ve bu çekirdek etrafında dönen elektronlardan oluşmaktadır. Rutherford çekirdeği oluşturan pozitif yüklü parçacığa proton adını verdi.
1932 yılında Chadwick nötronu buldu. Daha sonra kuantum teorisi doğrultusunda Niels Bohr Bohr atom modelini ortaya attı ve elektronların belli yörüngelerde bulunabildiğini ve bunun Planck sabiti ile ilgili olduğunu ifade etti.
Yapısı Bir atomun çapı, elektron bulutu da dahil olmak üzere yaklaşık 10 − 8 cm mertebesindedir. Atom çekirdeğinin çapı ise 10 − 13 cm kadardır. Atomlar, boyutlarının görünür ışığın dalga boyundan çok küçük olması sebebiyle optik mikroskoplarla görüntülenemezler. Atomların pozisyonlarını belirleyebilmek için elektron mikroskobu, x ışını mikroskobu, nükleer manyetik rezonans (NMR) spektroskopisi gibi araç ve yöntemler kullanılır.
Yalnız elektronlar çekirdek çevresinde ancak belirli enerji seviyelerine sahip yörüngelerde dönerler, konumları ancak bir olasılık fonksiyonu ile ifade edilebilir. Elektronlar çekirdeğin etrafında bulutsu bir şekilde görünür.



Atom Ve Yapısı
Hava,su,dağlar,hayvanlar,bitki ler,vücudumuurduğumu z koltuk,kısacası en ağırından en hafifine kadar gördüğümüz ,dokunduğumuz ,hissettiğimiz herşey atomdan meydana gelmiştir.Elinizde tutuğunuz kitabın herbir sayfası milyarlarca atomdan oluşur.Atomlar öyle küçük parçalardır ki,en güçlü mikroskopla dahi bir tanesini görmek mümkün değildir.Bir atomun çapı ancak milimetrenin milyonda biri kadardır.

Bu küçüklüğü bir insanın gözünde canlandırması pek mümkün değildir.O yüzden bunu bir örnekle açıklamaya çalışalım:

Elinizde bir anahtar olduğunu düşünün. Kuşkusuz bu anahtarın içindeki atomları görebilmemiz mümkün degildir.Atomları mutlaka görmek istiyorum diyorsanız,elinizdeki anahtarı dünyanın boyutlarına getirmemiz gerekecektir.Elinizdeki anahtar dünya boyutunda büyürse,işte o zaman anahtarın içindeki her bir atom bir kiraz büyüklüğüne ulaşır ve sizde onları görebilirsiniz.

Yine bu küçüklügü kavraya bilmek ve herseyin nasıl atomlarla dolu olabildigini görebilmek içinbir örnek daha verelim:

Bir tuz tanesinin tüm atomlarını saymak istedigimizi düsünelim.Saniyede bir milyar (1.000.000.000) tane sayacak kadar eliçabuk olduguuzuda varsayalım.Bu dikkate deger beceriye karsın bu ufacık tuz tanesi içindeki atom sayısını tam olarak tesbit edebilmek için besyüz yıldan fazla zamana ihtiyacımz olacaktır.

Peki bu kadar küçük bir yapının içinde ne vardır?

Bu derece küçük olmasına rağmen atomun içinde evrende gördüğümüz sistemle kıyaslayabileceğimiz derecede kusursuz bir sistem bulunmaktadır.

Her atom, bir çekirdek ve çekirdeğin çok uzağındaki yörüngelerde dönüp-dolaşan elektronlardan oluşmuştur.Çekirdeğin içinde ise proton ve nötron ismi verilen başka parçacıklar vardır.

Çekirdek
Çekirdek,atomun tam merkezinde bulunmaktadır ve atomun niteliğine göre belirli sayıda proton ve nötrondan oluşmuştur.Çekirdeğin yarı çapı,atomun yarıçapının onbinde biri kadardır.Rakam olarak erilirse;atomun yarıçapı 10-8cm, çekirdeğin yarıçapı ise 10-12cm kadardır. Dolayısıyla çekirdeğin hacmi atomun hacminin 10 milyarda biri eder.

Bu küçüklüğü yine gözümüzde canlandıramayacağımıza göre, kiraz örneğimizden devam edebiliriz. Biraz önceki sayfada bahsettiğimiz gibi elinizdeki anahtarı dünya boyutuna getirdiğimizde ortaya çıkan kiraz büyüklüğündeki atomların içinde çekirdeği arayalım.Ama bu arayış boşunadır,çünkü böyle bir ölçekte de çok daha küçük olan çekirdeği gözlemleme olanağımız kesinlikle bulunamaz.Gerçekten bir şey görebilmek için yine ölçü değiştirmek gerekecektir.Atomumuzu temsil eden kiraz yeniden büyüyüp ikiyüz metre yüksekliğinde kocaman bir top olacaktır. Bu akıl almaz boyuta karşın atomumuzun çekirdeği yine de çok küçük bir toz tanesinden daha iri duruma gelmeyecektir.

Öyle ki, çekirdeğin 10-13cm olan ile atomun 10-5cm olan çapını kıyasladığımızda şöyle bir sonuç ortaya çıkar:Atomu bir küre şeklinde kabul ederek bu küreyi tamamen çekirdekle doldurmak istediğimiz taktirde bu iş için 1015 atom çekirdeği gerekecektir.

ancak bundan daha şaşırtıcı bir durum vardır;Boyutları 10 milyarda biri olmasına rağmen, çekirdeğin kütlesi atomun kütlesinin %99.95'ni oluşturmaktadır.Peki birşey nasıl olurda bir yandan kütlesinin yaklaşık tamaını oluştururken,diğer yandan da hemen hemen hiç yer kaplamasın?

Bunun sebebi şudur:Atomun kütlesini oluşturan yoğunluk tüm atoma eşit olarak dağılmamıştır, yani atomun bütün kütlesi atomunçekirdeğine birikmiştir. Diyelim ki ,sizin 10 milyon m2 bir evimiz var ve bu evin tüm eşyasını 1 m2 'lik bir odada toplamanız gerekiyor .Bunu yapabilir misiniz? Tabii ki hayır. Ancak atom çekirdeği dünyada eşi-benzeri ,olmayan çok büyük bir güçle bunu yapabilmektedir.

1932 yılına dek ,çekirdeğin proton ve elektronlardan oluştuğu sanılıyordu. Ancak yapılan araştırmalarla elektronların değil nötronların atom çekirdeğini oluşturduğu anlaşıldı.Atom çekirdeine sığabilen bir protonun büyüklüğü ise 10-15 metredir. 

Atom Çekirdeğinin Keşfi
Atom çekirdeğinin varlığı üzerine ilk çalışma radyoaktifliğin keşfinden sonra elde edilen α ışınlarının bir altın yaprak üzerine düşürülmeleri ile Rutherford tarafından yapılmıştır. Bu çalışma Greiger-Marsten ve Chadwick tarafından birbirinden bağımsız yapılmış ve teori doğrulanmıştır. Rutherford ve çalışma arkadaşları α ışınlarını ince bir altın yapraktan geçimi şekildeki şeması görülen düzeneği kullanarak incelemişlerdir. Bir kurşun blok üzerine açılan ince bin delik üzerine yerleştirilen radyum parçasından elde edilen α ışını demeti altın levha üzerine düşürülmüştür. Altın yaprağı geçen ışınımlar O noktası etrafında birlikte dönebilen bir flüoresans levha ve mikroskop yardımıyla gözlenmiştir. 6.10-5 cm kalınlığındaki altın levha havayı geçirmemektedir. α ışınlarının hava molekülleri içindeki etkisini önlemek içinde sistem vakumlanmıştır.

Altın atomlarının α parçacıklarına göre çok daha büyük olması düşüncesiyle bu ışınlar için altın yaprağın bir set oluşturacağı her ne kadar akla gelebilirse de deneyde bunun tersine olarak α ışınlarının büyük bir kısmının levhayı geçerek yoluna devam ettikleri, küçük bir kısmının da saçılmaya uğradığı deneyle gözlenmiştir. Altından başka diğer maddelerde de aynı deneyler yapılmış ve ışınımların saçılmaya uğrayan kısmının maddenin kalınlığı ile orantılı olduğu bulunmuştur. Bu deneyde Rutherford’un çıkardığı sonuç şudur: Atomların kütleleri son derece küçük boyutlu çekirdeklerde toplanmıştır. Elektriksel boşama olaylarında elektronlar atomdan kopartılarak pozitif iyonlar oluştuğuna göre; elektronlar atomun dış kısmını meydana getirirler. Elektronların atomun dış kısmına tutunabilmeleri için de çekirdeğin pozitif yüklü olması gerekir. Dolayısıyla çekirdeğin bu pozitif yükü onu kuşatan elektronların toplam negatif yüküne eşittir. Elektronlara etki eden Coulomb kuvveti ile evrensel çekim kuvvetinin matematiksel ifadeleri birbirine benzediğine göre çekirdek yada etrafındaki güneş sistemine benzemelidir. Bu düşünceye göre elektronlar çekirdeğin etrafında dönmektedirler. α ışınlarının büyük bir kesiri yaklaşık 2000 atom kalınlığındaki bir altın levhayı geçtiğine göre çekirdeğin çapı atomun çapı yanında çok küçüktür. Güneş ve yıldızlar arasında olduğu gibi çekirdek ve elektronlar arasında büyük bir boşluk vardır. Bu sebeple bir α parçacığının dorudan doğruya çekirdeğe çarpma ihtimali çok azdır. Buna karşın elektronlara çarpma ihtimali daha büyüktür.Ancak elektronların kütlesi α parçacıklarının kütlesinden çk küçük olduğundan böyle bir çarpışmada α parçacıklarının doğrultusu ve hızı değişmez. Fakat elektronları yörüngelerinden çıkartabilirler. Çekirdek ve α ışınlarının her ikisi de (+) oldukları için α ışınları çekirdek tarafından itilir. Bir α taneciği çekirdeğe ne kadar çok yaklaşırsa doğrultusu o kadar değişir. İşte saçılmanın sebebi budur.

Elektron: 

Elektronlar tıpkı dünyanın güneş çevresinde dönerken, aynı zamanda kendi çevresinde dönmesi gibi, atom çekirdeğinin çevresinde dönen parçacıklardır. Aynı, gezegenlerde olduğu gibi bu dönüş, bizim yörünge adını verdiğimiz yollarda, çok büyük bir düzen içinde ve hiç durmaksızın gerçekleşir. Fakat dünyayla güneşin büyüklükleri arasındaki oran ile atomun içindeki oran çok farklıdır. Eğer elektronların büyüklüğü ile dünyanın büyüklüğü arasında bir kıyas yapmak gerekirse, bir atomu dünya kadar büyütsek, elektron sadece bir elma boyutuna gelecektir.

En güçlü mikroskopların bile göremeyeceği kadar küçük bir alanda dönüp-duran onlarca elektron, atomun içinde çok karışık bir trafik yaratır. Burada dikkat çeken en önemli nokta, çekirdeği elektrik yükünden oluşan bir zırh gibi kuşatan bu elektronların atomun içinde en ufak bir kazaya yol açmamalarıdır. Üstelik atomun içinde yaşanacak en ufak bir kaza atom için felaket olabilir. Ama böyle bir kaza asla gerçekleşmez; tüm işleyiş mükemmel bir düzen ve kusursuz bir sistem içinde devam eder. Çekirdeğin çevresinde saniyede 1.000 km. gibi akıl almaz bir hızla hiç durmadan dönen elektronlar, birbirleriyle bir kez bile çarpışmazlar. Birbirlerinden herhangi bir farkları bulunmayan bu elektronların farklı farklı yörüngelerde bulunmaları, son derece şaşırtıcıdır ve "bilinçli bir tasarım"ın ürünü olduğu apaçıktır. Kütleleri ve hızları birbirlerinden farklı olsaydı çekirdeğin etrafında farklı yörüngelere dizilmeleri doğal karşılanabilirdi. Nitekim Güneş Sistemimiz'deki gezegenlerin dizilişi bu mantıktadır.

Yani birbirinden kütle ve hız olarak tamamen farklı olan gezegenler, doğal olarak Güneş'in etrafında farklı yörüngelere yerleşmişlerdir. Ama atomdaki elektronların durumu bu gezegenlerden tamamen farklıdır.

Elektronlar, nötron ve protonların neredeyse ikibinde biri kadar ufak parçacıklardır. Bir atomda, protonlarla eşit sayıda elektron bulunur ve her elektron her bir protonun taşıdığı artı (+) yüke eşit değerde eksi (-) yük taşır. Çekirdekteki toplam artı (+) yük ile elektronların toplam eksi (-) yükü birbirini dengeler ve atom nötr olur.

Elektronların, taşıdıkları elektrik yükü itibariyle bazı fizik kurallarına uymaları gerekir. Bu fizik kuralları "aynı elektrik yüklerinin birbirini itmesi ve zıt yüklerin birbirlerini çekmesi"dir.

İlk olarak, normal koşullarda hepsi eksi yüklü olan elektronların bu kurala uyup birbirlerini itmeleri ve çekirdeğin etrafından dağılıp-gitmeleri gerekir. Ancak durum böyle olmaz. Eğer, elektronlar çekirdeğin etrafından dağılsaydı, tüm evren boşlukta dolaşan, proton, nötron ve elektronlardan ibaret olurdu. İkinci olarak; artı yüke sahip olduğu için çekirdeğin, eksi yüklü elektronları kendine çekmesi ve elektronların da çekirdeğe yapışmaları gerekirdi. Böyle bir durumda da çekirdek bütün elektronları çeker ve atom kendi içine çökerdi.

Ancak bu olumsuzlukların hiçbiri olmaz. Elektronların az önce belirttiğimiz (1.000 km/s) olağanüstü kaçış hızları, bunların birbirlerine uyguladıkları itici kuvvet ve çekirdeğin elektronlara uyguladığı çekim kuvveti o kadar hassas değerler üzerine kurulmuştur ki, bu üç zıt etken birbirini mükemmel bir şekilde dengeler. Sonuçta atomdaki bu muazzam sistem dağılıp parçalanmadan sürüp gider. Atoma etki eden bu kuvvetlerden tek bir tanesinin, olması gerekenden biraz daha fazla veya biraz daha az olması atomun hiçbir zaman var olmamasına neden olurdu.

Bu etkenlerin yanı sıra, çekirdekteki protonları ve nötronları birbirine bağlayan nükleer kuvvetler olmasaydı, eşit yüke sahip olan protonlar değil kenetlenmek, birbirlerine yaklaşamayacaklardı bile. Aynı şekilde nötronlar da çekirdeğe hiçbir şekilde bağlanamayacaklardı. Bunun sonucunda çekirdek, dolayısıyla atom diye bir şey olmayacaktı.

Elektronların Yörüngesi

En güçlü mikroskopların bile göremeyeceği kadar küçük bir alanda dönüp duran onlarca elektron, daha önce de belirtildiği gibi atomun içinde son derece karışık bir trafik yaratırlar. Ancak bu trafik, en sistemli şehir trafiğiyle bile kıyas edilemeyecek kadar düzenlidir ve elektronlar hiçbir şekilde birbirleriyle çarpışmazlar. Çünkü elektronların her birinin ayrı bir yörüngesi vardır ve bu yörüngeler hiçbir zaman birbiriyle çakışmaz.


Atom çekirdeğinin çevresinde 7 tane yörünge vardır. Asla değişmeyen bu 7 yörüngedeki elektron sayısı da bir matematiksel formülle belirlenmiştir: 2n2. Atomların tüm yörüngelerinde bulunabilecek en fazla elektron sayısı işte bu formülle sabitlenmiştir (formüldeki "n" harfi, yörünge numarasını belirtir).

Evreni oluşturan sınırsız sayıdaki atomun elektron yörüngelerinin asla şaşmadan 2n 2 formülüne uyarak belirli bir sayıda kalmaları bir düzenin göstergesidir. Elektronlar inanılmaz hızlarda hareket etmelerine rağmen, atomun içinde herhangi bir kargaşanın çıkmaması da yine bu eşsiz düzenin bir devamıdır.


Gerek Dalton’un gerekse yunanlıların kuramlarında atom, maddenin en küçük taneciği olarak kabul edilmişti.19.yüzyılın sonlarına doğru atomun kendisinin de daha küçük taneciklerden oluştuğu düşünülmeye başlandı.Atom hakkındaki düşüncelerde meydana gelen bu değişikliğe elektrikle yapılan deneyler neden oldu.

1807-1808 yıllarında ünlü İngiliz kimyacısı Humphry Davy bileşikleri ayrıştırmak için elektrik kullanarak beş element (potasyum,sodyum,kalsiyum,stro nsiyum ve baryum) buldu.Bu çalışmalarına dayanarak Davy , bilesiklerde elementlerin elektriksel nitelikli çekim kuvvetleriyle bir arada tutulduklarını önerdi.

Vakumdan elektrik akımının geçirildiği deneyler 1859 da Julius Plücker katod ışınlarını bulmasına yol açtı.Katot ışnları elde etmek için havası iyice boşaltılmış bir cam tüpün uçlarına iki elektrod yerleştrilir.Bu elektrodlara yüksek gerilim uygulandığında katot adı verilen negatif elektroddan ışınlar çıkar.Bu ışınlar negatif yüklüdür doğrusal yol izler ve katodun karşısındaki tüp çeperlerinin ışık saçmasına sebep olur. 19.yüzyılın son yıllarında katot ışınları ayrıntılı olarak incelendi.Birçok bilim adamının deneyleri sonucunda katot ışınlarının hızla hareket eden eksi yüklü parçacıklar olduğu ortaya çıktı ve bu parçacıklar daha sonra Stoney’in önerdiği gibi elektron adı verildi.

Katottan çıkan elektronlar katot için hangi :-):-):-):-)l kullanılırsa kullanılsın aynı özelliktedir.Zıt yükler birbirini çektiğinden katot ışınlarını oluşturan elektron hüzmeleri yolları üzerinde üstte ve altta bulunan zıt yüklü iki levha arasından geçerken pozitif yüklüsüne doğru çekilirler.Demek ki bir elektrik alanı içinde katot ışınları normal doğrusal yollarından saparlar.Bu sapmanın açısı :

1. Tanecik yükü ile doğru orantılıdır.Yükü büyük olan tanecik az yük taşıyan tanecikten daha çok sapar.

2. Tanecik kütlesi ile ters orantılıdır.Kütlesi büyük olan tanecik küçük olandan daha az sapar.
Bundan dolayı yükün kütleye oranı bir elektrik alanı içinde elektronların doğrusal yoldan ne kadar sapacağını belirler.elektronlar magnetik bir alan içinde de sapma gösterirler.Fakat bu durumda sapma uygulanan magnetik alana dik yöndedir.

Katot ışınlarının elektrik ve magnetik alanlar içindeki sapmalarını inceleyen Joseph T. Thomson , 1897’de elektron için değerini saptadı bu değer:

E/M=-1,7588.10 üzeri sekiz coul /g dır.

Coul uluslar arası sistemde elektrik yükü birimidir.Bir kulon bir amperlik akım tarafından iletkenin belirli bir noktasından bir saniyede taşınan yük miktarıdır.

Elektron yükünün duyar olarak ölçümü ilk defa Robert A. Milikan tarafından 1909 da yapıldı.Milikan’ın deneyinde x-ışınları etkisi ile havayı oluşturan moleküllerden elektronlar koparılır.Çok küçük yağ damlacıkları da bu elektronları alıp elektrik yükleri ile yüklenirler.Bu yağ damlacıkları iki yatay levha arasından geçirilirler.Yağ damlacıklarının düşüş hızları ölçülerek kütleleri hesaplanır.

Yatay levhalara elektrik akımı uygulandığında negatif yüklü damlacık pozitif yüklü levhaya doğru çekileceğinden damlacığın düşüş hızı değişir.bu koşullar altında düşüş hızı ölçülerek damlacığın yükü hesaplanabilir.Belli bir damlacık bir veya daha çok sayıda elektron alabileceğinden bu yöntemle hesaplanan yükler daima birbirinin aynı değildir.Fakat bu yükler hep belli bir yük değerinin katları olduğundan bu yük değeri bir elektronun yükü kabul edilir.


Proton:

Nötral bir atom veya molekülden bir veya daha çok elektron koparıldığında geriye kalan tanecik koparılan elektronların tolam eski yüküne eşit miktarda artı yük kazanır.Bir neon atomundan bir elektron koparıldığında geriye kalan tanecik koparılan elektronların toplam eksi yüküne eşit miktarda artı yük kazanır.Bir neon atomundan bir elektron koparıldığında bir Ne(+) iyonu oluşur.Bir elektriksel deşarj tüpünde katot ışınları tüpün içinde bulunan gaz atomlarından ve moleküllerinden elektronların çıkmasına sebep oldukları zaman , bu tür artı yüklü tanecikler oluşur.Bu artı yüklü iyonlar eksi yüklü elektroda doğru hareket ederler.Eğer katot delikli bir levhadan yapılmışsa artı yüklü iyonlar bu deliklerden geçerler.katot ışınlarının elektronları ise ters yönde hareket ederler.

Pozitif ışınlar adı verilen bu artı yüklü iyon demetleri ilk defa 1886 da Eugen Goldstein tarafından bulundu.Pozitif ışınların elektrik ve magnetik alanların etkisinde sapmaları ise 1898 de Wilhelm Wien ve 1906 da J.J. Thomson tarafından incelendi.Artı yüklü iyonlar için e/m değerlerinin saptanmasına , katot ışınlarının incelenmesinde kullanılan yöntemin hemen hemen aynısı kullanıldı.Deşarj tüpünde değişik gazlar kullanıldığı zaman değişik tür artı yüklü iyonlar oluşur.

Proton adı verilen bu tanecikler bütün atomların bir bileşenidir.Protonun yüklü elektronun yüküne eşit fakat ters işaretlidir.



Bu yüke yük birimi denir.Proton artı bir elektrik yük birimine , elektron ise eksi bir elektrik yük birimine sahiptir.(Protonun kütlesi elektronun kütlesinin 1836 katıdır).

Nötron:

Atomlar elektrik yükü bakımından nötral olduklarından bir atomun içerdiği proton sayısı elektron sayısına eşit olmalıdır. Atomun toplam kütlesini açıklayabilmek için 1920 de Ernest Rutherford atomda yüksüz bir taneciğin var olduğunu savundu. Bu tanecik yüksüz olduğundan onu incelemek ve tanımlamak zordu. Fakat 1932 de James Chadwick nötronun varlığını kanıtlayan çalışmalarını sonuçlarını yayınladı.Chadwick, nötronların oluştuğu bazı nükleer tepkimelerin verilerinden nötronun kütlesini hesaplayabildi.Bu tepkimelerde kullanılan ve oluşan bütün taneciklerin kütlelerini ve enerjilerini göz önüne alarak Chadwick nötronun kütlesini hesapladı.Bu kütle protonun kütlesinden biraz daha büyüktü.

Günümüzde daha birçok atom altı tanecik bulunmuştur.Fakat bu taneciklerin atom yapısı ile olan ilişkisi çok iyi bilinmemektedir.Kimyasal çalışmalar için atomun yapısı elektron , proton ve nötronun varlığına dayanarak yeterince açıklığa kavuşturulmuştur.

İZOTOPLAR (Protonları Aynı Olan)

Belli bir elementin bütün elementlerinin atom numarası aynıdır. Fakat bazı elementler kütle numarası bakımından farklılık gösteren çeşitli tipte atomlardan oluşmuştur.Aynı atom numarasına fakat farklı kütle numarasına fakat farklı kütle numarasına sahip atomlara İZOTOP atomlar adı verilir.

Görüldüğü gibi izotoplar çekirdeklerindeki nötron sayısı bakımından farklıdırlar;bu da doğal olarak atom kütlelerinin farklı olduğu anlamına gelir.Bir atomun kimyasal özellikleri ilke olarak atom numarası ile belirtilen proton ve elektron sayısına bağlıdır. Bundan dolayı bir elementin izotopları birbiri ile hemen hemen aynı olan kimyasal özelliklere sahiptir.Bazı elementler doğada tek bir izotop halinde bulunurlar.Fakat çoğu elementlerin birden çok izotopu vardır.Örnek olarak kalayın 10 doğal izotopu vardır.

Kütle spektrometresi bir elementte kaç izotop bulunduğunu , her izotopun tam olarak kütlesini ve bağıl miktarını saptamak için kullanılır.Buharlaştırılmış madde , elektronlarla bombardıman edilerek artı yüklü iyonlar oluşturulur.Bu iyonlar eksi yüklü bir levhaya doğru çekilerek bu levha üzerinde bulunan dar bir aralıktan hızla geçirilirler.

İyot demeti bundan sonra magnetik bir alan içinden geçirilir.yüklü tanecikler magnetik bir alan içinde dairesel bir yörünge izlerler.Taneciğin yükü arttıkça doğrusal yörüngesinden sapma da artar.Bu nedenle , magnetik bir alanda artı yüklü bir iyonun izlediği dairesel yörüngenin yarıçapı o iyonun e/m değerine bağlıdır.

Değişik e/m değerine sahip iyonların bu son aralıktan geçmesi ise magnetik alan şiddeti veya iyonları hızlandırmak için kullanılan voltaj ayarlanarak sağlanır.Böylece aygıttaki farklı iyon türlerinden her biri bu aralıktan ayrı ayrı geçirilirler.Detektör her farklı iyon demetinin şiddetini ölçer ; bu iyon şiddeti


örnekte bulunan izotopların bağıl miktarına bağlıdır.

Atom Numarası ve Periyotlar yasası

19.yüzyılın başlarında kimyacılar elementler arasında bulunan fiziksel ve kimyasal benzerliklerle ilgilendiler.1817 ve 1829 da Johann W. Döbereiner “triad” lar adını verdiği element serileri (Ca,Sr,Ba;Li,Na,K;Cl,Br,I;S,Se ,Te) hakkındaki incelemelerini yayınladı burada her seriyi oluşturan elementler birbirine benzeyen özeliklere sahip olup serideki ikinci elementin atom ağırlığı yaklaşık diğer iki elementin atom ağırlıklarının ortalamasına eşittir.

Bunu izleyen yıllarda birçok kimyacı elementleri benzeyen özellikleri açısından sınıflandırmayı denedi.1863-66 yıllarında John A. R. Newlands “oktavlar yasası” nı önerip geliştirdi.Newlands a göre elementler atom ağırlıklarının artış sırasına göre dizildiklerinde sekizinci element birinciye , dokuzuncu element ikinciye benziyor ve bu durum böylece devam ediyordu.Newlands bu ilişkiyi müzik notalarındaki oktavlara benzetti.Fakat gerçek ilişki Newlands’ın varsaydığı kadar basit değildi.Newlands ın çalışmaları dayanaksız bulunmuş ve diğer kimyacılar tarafından ciddiye alınmamıştır.

Elementlerin modern periyodik sınıflandırılması Julius Lothar Meyer ve özellikle Dimitri Mendeleev ‘in çalışmalarına dayanır.Mendeleev periyodik bir yasa önerdi ; bu yasaya göre elementler atom ağırlığı artışına göre incelendiğinde , özelliklerindeki benzerlikler periyodik olarak tekrarlanır.Mendeleev in çizelgesinde benzer elementler grup adı verilen dikey sütunlarda toplanır.

Ayrıca Mendeleev in çizelgesinde henüz bulunmamış elementler için boş yerler bıraktı ve çizelgede olmayan elementlerden üç tanesinin özelliklerini önceden belirtti.Hemen sonra Mendeleev in öngördüğü özelliklerin çoğuna sahip oldukları belirlenen Skandiyum,galyum ve germanyum elementlerinin bulunması periyodik sistemin doğru olduğunu gösterdi.Asal gazların varlığı Mendeleev tarafından öngörülmediği halde bu elementler 1892-98 yılları arasında bulunduktan sonra periyodik çizelgedeki yerlerine oldukça iyi bir şekilde uydular.

Periyodik çizelgedeki plana göre K,Ni ve I elementlerinin atom ağırlığının artışına göre belirlenmiş dizilişinin dışında yer almamaları gerekliydi.Örneği iyot atom ağırlığına göre 52 numaralı element olmalıydı.Fakat kimyasal açıdan benzediği F,Cl ve Br elementleri ile aynı gurupta olabilmesi için iyot keyfi olarak 53 numaralı element oldu.Periyodik sınıflandırmanın daha ayrıntılı olarak incelenmesi ile bir çok araştırıcı periyodik özelliğin,atom ağırlığından çok , başka bir temel bağlı olduğuna inandı.Bu temel özelliğinde o zamanlar periyodik sistemden çıkarılan ve sadece bir seri numarası olan atom numarası ile ilişkisi olduğunu öğrendi.

1913-14 yıllarında Henry G. J. Moseley in çalışmaları bu problemleri çözdü.Yüksek enerjili katot ışınları bir hedefe odaklandığında X-ışınları oluşur.Bu X-ışınları çeşitli dalga boylarındaki bileşenlere ayrılabilir ve bu şekilde elde edilen çizgi spektrumları da fotografik olarak kaydedilebilir.Hedef olarak değişik elementler kullanıldığında değişik X-ışınları spektrumları elde edilir ve her spektrum sadece birkaç karakteristik spektral çizgi içeren X-ışınları spektrumu vardır.

Moseley atom numaraları 13 ile 79 arasında olan 38 elementin X-ışınları spektrumunu inceledi.Her elemen için o elemente karşılık gelen karakteristik spektrum çizgisini kullanan Moseley , elementin atom numarası ile çizgi frekansının kare kökü arasında doğrusal bir ilişki olduğunu buldu.Başka bir değişle elementler atom numarası artışına göre dizildiğinde spektrum çizgisi frekansının karekökü bir elementten diğerine gittikçe sabit bir miktarda artar.

Bundan dolayı Moseley X-ışınları spektrumuna dayanarak elementlerin doğru atom numaralarını tahmin edebildi.Böylece atom ağırlıkları komşu atomlarınkine uygun düşmeyen K,Ni ve I un sınıflandırılması problemi de çözümlenmiş oldu.Diğer taraftan Moseley Ce den Lu e kadar olan seride 14 element bulunması ve bu elementlerin ve bu elementlerin periyodik çizelgede Lantan’dan sonra gelmeleri gerektiğini bildirdi.Moseley’in diagramları ayrıca 79 numaralı elementten önce henüz o zamana kadar bulunmamış 4 elementin var olması gerektiğini de gösterdi.Nihayet Moseley’in çalışmalarına dayanarak periyodik yasa “Elementlerin fiziksel ve kimyasal özellikleri atom numarasının periyodik fonksiyonudur” şeklinde tekrar tanımlandı.

Moseley in atom numaraları ile Rutherford un tanecikleri saçılma deneyinden hesapladığı çekirdek yükleri oldukça iyi bir uyum içindeydi.buna dayanarak Moseley atom numarasının atom çekirdeğinde bulunan artı birimlerin sayısı olduğunu önerdi.

Moseley ayrıca, atomda bir elementten diğerine gidildikçe artan temel bir nicelik bulunduğunu ifade ederek bu niceliğin ancak merkezdeki artı yüklü çekirdeğin yüklü olabileceğini belirtti.

X-ışınları , görünür ışıktan çok daha kısa dalga boylarına ve dolayısıyla daha yüksek frekans ve enerjilere sahip elektro magnetik ışınlardır.Bir elementin x-ışınları spektrumunun olmasına hedef element atomlarında meydana gelen elektron geçişlerinin sebep olduğuna inanılmaktadır.X-ışınlar tüpüne katot ışınları , hedefteki atomların iç kabuklarından elektronlar koparırlar.Dış kabuktaki elektronlar iç kabuklarda oluşan bu boşlukları doldurdukları zaman x-ışınları yayınlanır.Bir atomda elektronun , yüksek bir enerji düzeyinden K düzeyine geçmesi sonucu oldukça bir büyük bir miktarda enerji açığa çıktığından , elde edilen radyasyonun frekansı yüksektir.Buna karşı gelen dalga boyu da x-ışınlarına özgü olup kısadır.

Bir elektron geçişi sırasında açığa çıkan radyasyonun frekansı ayrıca atom çekirdeğindeki yüke bağlıdır.Açığa çıkan bu enerjinin miktarı çekirdek yükünün karesi ile doğru orantılıdır.Çekirdeğin yükü arttıkça açığa çıkan enerji artar ve yayınlanan radyasyonun dalga boyu kısalır.Moseley in gözlemleri de bu ilişkiyi yansıtmaktadır.


ATOMUN ELEKTRİKLİ YAPISI

1. Çekirdekteki Dev Güç: Güçlü Nükleer Kuvvet

Çevremizde gördüğümüz her şeyin, kendimiz de dahil olmak üzere atomlardan oluştuğunu ve bu atomların da pek çok parçacıktan meydana geldiğini gördük. Peki bir atomun çekirdeğini oluşturan tüm bu parçacıkları bir arada tutan güç nedir? İşte çekirdeği bir arada tutan ve fizik kurallarının tanımlayabildiği en şiddetli kuvvet olan bu kuvvet, "güçlü nükleer kuvvet"tir.

Bu kuvvet atomun çekirdeğindeki protonların ve nötronların dağılmadan bir arada durmalarını sağlar. Atomun çekirdeği bu şekilde oluşur. Bu kuvvetin şiddeti o kadar fazladır ki, çekirdeğin içindeki protonların ve nötronların adeta birbirine yapışmasını sağlar. Bu yüzden bu kuvveti taşıyan çok küçük parçacıklara Latince'de "yapıştırıcı" anlamına gelen "gluon" denilmektedir. Bu yapışmanın şiddeti çok hassas ayarlanmıştır. Bu yapıştırıcının kuvveti protonların ve nötronların birbirlerine istenilen mesafede bulunmalarını sağlamak için özel olarak tespit edilmiştir. Söz konusu kuvvet biraz daha yapıştırıcı olsa protonlar ve nötronlar birbirlerinin içine geçecek, biraz daha az olsa dağılıp gideceklerdi. İşte bu kuvvet Büyük Patlama'nın ilk saniyelerinden beri atomun çekirdeğinin oluşması için gerekli olan yegane değere sahiptir.

Güçlü nükleer kuvvetin açığa çıktığı zaman ne kadar büyük tahrip gücü olduğunu bize Hiroşima ve Nagazaki'deki tecrübeler göstermiştir. Atom bombalarının bu denli etkili olmasının tek sebebi atom çekirdeğinde saklanan gücün açığa çıkmasıdır.

2. Atomun Emniyet Kemeri: Zayıf Nükleer Kuvvet

Şu an yeryüzündeki düzeni sağlayan en önemli etkenlerden biri de atomun kendi içinde dengeli bir yapıya sahip olmasıdır. Bu denge sayesinde maddeler bir anda bozulmaya uğramaz ve insanlara zarar verebilecek ışınları yaymaz. Atom bu dengesini çekirdeğindeki protonlarla nötronlar arasında var olan "zayıf nükleer kuvvet" sayesinde elde eder. Bu kuvvet özellikle içinde fazla nötron ve proton bulunduran çekirdeklerin dengesini sağlamada önemli bir rol oynar. Bu dengeyi sağlarken gerekirse bir nötron protona dönüşebilir.

Bu işlem sonucunda çekirdekteki proton sayısı değiştiği için, artık atom da değişmiş, farklı bir atom olmuştur. Burada sonuç çok önemlidir. Bir atom parçalanmadan, başka bir atoma dönüşmüş ve varlığını korumaya devam etmiştir. İşte bu şekilde de canlılar kontrolsüz bir şekilde çevreye dağılıp insanlara zarar verecek parçacıklardan gelebilecek tehlikelere karşı adeta bir emniyet kemeri gibi korunmuş olur.

3. Elektronları Yörüngede Tutan Kuvvet: Elektromanyetik Kuvvet

Bu kuvvetin keşfedilmesi fizik dünyasında bir çığır açtı. Her cismin kendi yapısal özelliğine göre bir "elektrik yükü" taşıdığı ve bu elektrik yükleri arasında bir kuvvet olduğu öğrenilmiş oldu. Bu kuvvet zıt elektrik yüklü parçacıkların birbirini çekmesini, aynı yüklü parçacıkların da birbirlerini itmelerini sağlar. Bu sayede bu kuvvet atomun çekirdeğindeki protonlarla çevresindeki yörüngelerde dolaşan elektronların birbirlerini çekmelerini sağlar. İşte bu şekilde atomu oluşturacak iki ana unsur olan "çekirdek" ve "elektronlar" bir araya gelme fırsatı bulurlar.

Bu kuvvetin şiddetindeki en ufak bir farklılık elektronların çekirdek etrafından dağılmasına ya da çekirdeğe yapışmasına neden olur. Her iki durumda da atomun, dolayısıyla madde evreninin oluşması imkansız hale gelir. Oysa bu kuvvet ilk ortaya çıktığı andan itibaren sahip olduğu değer sayesinde çekirdekteki protonlar elektronları atomun oluşması için gereken en uygun şiddette çeker.

Güçlü nükleer kuvvet
15

Zayıf nükleer kuvvet
7,03.10 -3

Elektromanyetik kuvvet
3,05.10 -12
Facebook beğen
 
Reklam
 
 

=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=