iklim bilgisi2
İKLİM BİLGİSİ

Geniş bir sahada uzun yıllar boyunca (en az 33 yıl) görülen hava olaylarının (sıcaklık, basınç, rüzgar, nemli-lik, yağış vb.) ortalamasına iklim denir. İklimi inceleyen bilim dalına Klimatoloji denir.

Atmosferde gerçekleşen hava olaylarını güneşten gelen enerji belirler. Güneşten gelen enerji sıcaklığı etkiler. Sıcaklık ise; diğer iklim elemanlarının (basınç, rüzgarlar, nemlilik ve yağış) oluşum ve dağılışını kontrol eder.



İKLİMİN ETKİLERİ

İklim, canlı yaşamı etkileyen en önemli unsurdur. Ayrıca yeryüzünün şekillenmesinde de önemli bir rol oynar. İklimin etkilerini üç ana başlık altında toplayabiliriz:

a. İklimin İnsan Üzerindeki Etkileri
Ø Nüfusun dağılışını,
Ø Ekonomik faaliyetlerini,
Ø Yiyecek ve giyeceklerini,
Ø Fizyolojik gelişimlerini,
Ø Karakterlerini,
Ø Kültür faaliyetlerini etkiler,

b. İklimin Ekonomik Hayat Üzerindeki Etkileri:
Ø Sanayinin dağılışını,
Ø Ulaşım faaliyetlerini,
Ø Konut tipi ve kullanılan malzemeyi,
Ø Turizm faaliyetlerini,
Ø Tarım faaliyetlerini ve ürünleri çeşitliliğini,
Ø Bunlara bağlı olarak ticaret şekilleri de iklimin kontrolü altındadır.

İklimin Doğal Çevre Üzerindeki Etkileri:
Ø Dış kuvvetlerin etki alanlarını,
Ø Yer şekillerinin oluşumunu,
Ø Taşların çözülme biçimini,
Ø Toprak oluşumu, tipleri ve verimliliğini,
Ø Bitki örtüsünü ve dağılışını,
Ø Göllerin dağılışı ve sularının kimyasal öz.,
Ø Yerüstü ve yer altı su durumu,
Ø Akarsu debilerini ve rejimlerini,
Ø Okyanus akıntılarının yönleri ve hızlarını,
Ø Hayvan türleri ve dağılışını,
Ø Erozyonu ve heyelan oluşumunu,
Ø Kalıcı kar sınırı,
Ø Ormanın ve tarımın üst sınırını,
Ø Denizlerin tuzluluk oranını etkiler.

Hava Durumu: Dar bir alanda, kısa süre içerisinde değişen atmosfer olaylarına hava durumu denir. Hava durumunu inceleyen bilim dalına meteoroloji denir.

İklim ve hava durumunun karşılaştırılması;
Ø İklim geniş sahalarda (ör. Akdeniz havzası), uzun yıllar boyunca (30-40 yıl) aynı kalan ortalama hava hali iken; hava durumu dar bir alanda (ör. İstanbul-Kadıköy), kısa sürede (bir iki saat) değişen atmosfer olaylarıdır.
Ø İklimde bir kararlılık söz konusu iken, hava durumu gün ve saat içerisinde değişme gösterir.

Meteoroloji bilimi, atmosferin fiziksel özelliklerini, atmosferde meydana gelen olayların dayandığı fizik kanunlarını ortaya koymaya çalışır. İklim elemanlarının günlük değerlerini çeşitli aletlerle ölçülür yada aletsiz olarak gözlenerek kayıtlara geçirilir. Yapılan bu işe Rasat (Gözlem) denir.

Meteoroloji biliminin yaptığı bu rasatları alarak bunların ortalamasını çıkarıp, bu hava olaylarının insan yaşamı üzerine olan etkilerini araştıran bilime ise Klimatoloji denir.

Bir yerin iklim özelliklerini tam ve doğru olarak belirte-bilmek için yeter sıklıkta ve gerekli yerlerde istasyon ağının olması gerekir.



ATMOSFER VE ÖZELLİKLERİ

Yerçekimi etkisi ile yer yüzünü çepeçevre saran gaz kütlesine atmosfer denir. Eski Yunanca’da atmos: nefes, sphere: küre demektir. Atmosfer ise nefes küre yada hava küre anlamına gelir.

Ortalama kalınlığı 10.000 km olan atmosfer, bileşimi, sıcaklığı bakımından farklı katmanlardan oluşur.



ATMOSFERİN KATMANLARI

Troposfer:
Atmosferin en alt katıdır. Kalınlığı ekvatordan kutuplara gittikçe azalır. Ekvator üzerinde 16 km, 45° enleminde 12 km, kutuplarda ise 6 km ortalama 11 km’dir. Bunun nedeni ise Ekvator’da ısınan havanın yükselmesi; kutuplarda ise soğuyan havanın alçalması ile Dünya’nın ekseni etrafındaki dönüşüyle, ekvatorda savrulma kuvvetinin fazla olmasıdır.

Su buharının tamamı Troposfer içerisinde bulunduğu için iklim olayları ancak bu katta görülür.

Yükseldikçe Troposfer’de gaz yoğunluğu azalır. Çünkü yerçekiminin etkisi ile gazlar yere yakın yerlerde daha çok yoğunlaşır.

Troposfer’de yükseldikçe sıcaklık her 200 m’de 1°C azalır. Çünkü Troposfer daha çok yerden ışıyan ışınlarlarla ısınır. Ayrıca sıcaklığı tutan gazların yere yakın yoğunlaşması ve atmosferin üstten soğuması da bu durumun oluşmasında etkilidir.

Atmosferdeki gazların % 75’i Troposfer katmanında bulunur. Troposfer Azot (% 78), Oksijen (% 21) ile CO2, su buharı, argon, neon, ksenon ve helyum gibi diğer gazlardan (% 1) oluşur. Azot ve oksijen yaşam için büyük önem taşırlar ve bu gazların atmosferde ki oranı sabittir. Ancak CO2 ve su buharının miktarı bulundukları yere, zamana ve iklim şartlarına göre değişir.

Karbondioksit, havada çok az miktarda (% 0 - 0,03) bulunmasına karşın, iklim olayları üzerinde önemli etkide bulunur. Karbondioksit atmosferin güneş ışınlarını emme ve saklama kabiliyetini arttırır. Miktarının artması sıcaklığın artmasına, azalması sıcaklıkların düşmesine neden olur. Jeolojik devirler içerisinde CO2 miktarın değişmesi iklim değişimlerini etkilemiştir

Su buharı, miktarı sıcaklığa, yer ve zamana bağlı olarak en fazla değişen gazdır. Bu miktar yerden yükseldikçe, kıyıdan uzaklaştıkça ve ekvatordan kutuplara doğru gittikçe azalır.

Stratosfer:
Troposferin üst sınırından itibaren 25-30 km yüksekliğe kadar çıkar. Bu katmanda su buharı olmadığı için iklim olayları görülmez.

Yatay hava hareketleri görüldüğü için dikey yönde sıcaklık değişimi yok denecek kadar azdır. Ekvator üzerinde sıcaklık -80°C civarında iken, kutuplarda -50°C civarındadır.

Ekvator ile kutuplar arasındaki sıcaklık farkından dolayı, Ekvatordan kutuplara doğru kuvvetli hava akımları oluşur. Jet rüzgarları adı verilen bu hava akımlarının saatteki hızları 500 km’ye kadar ulaşır.

Şemosfer:
Stratosfer’in üst sınırından itibaren 80-90 km yüksekliğe kadar çıkar. Gaz molekülleri seyrektir. İklim üzerinde etkisi azdır. Ozon tabakasının büyük bölümü bu katmanda yer alır.

Ozonosfer,yerden 19-45 km arasında yer alır. Ozon (O3) gazının en çok yoğunlaştığı kesim olduğu için bu adı almıştır. Güneş’ten gelen ultraviyole (morötesi) ışınları, ozon gazı ile reaksiyona girerek parçalar. Bu şekilde zararlı ışınların Dünya’ya gelmesi engellenmiş olur.

İyonosfer:
Şemosfer'in üst sınırından itibaren, 300-325 km yüksekliklerine kadar çıkar. Gaz molekülleri oldukça seyrektir. Gazlar ultraviyole ışınlarının etkisi ile iyonlarına ayrılmıştır. Sıcaklık, 250°C civarındadır. Radyo dalgaları bu tabakadan yansır.

Ekzosfer:
İyonosfer’in üst sınırından itibaren başlar. Bu katmanın üst sınırında yerçekimi oldukça az olduğundan gaz molekülleri uzaya kaçar. Bundan dolayı dış sınırı kesin değildir. Teorik olarak 10.000 km’ye kadar çıktığı kabul edilir.

ATMOSFERİN ETKİLERİ:
Ø Yaşam için gerekli olan gazları ihtiva eder.
Ø Güneş’ten gelen enerjinin hızla uzaya yansımasını engeller.
Ø Güneş ışınlarının dağılmasını sağlayarak, Güneş’i doğrudan görmeyen yerlerin de aydınlık olmasını sağlar.
Ø İçindeki hava akımları sayesinde gündüz olan kesimlerin aşırı sıcak, gece olan kesimlerin de aşırı soğumasını engeller.
Ø Güneşten gelen zararlı ışınları tutar.
Ø Sesi iletir.
Ø İklim olayları meydana gelir. Buna bağlı olarak iklimin etkilerinin kaynağını oluşturur.
Ø Uzaydan gelen göktaşlarının parçalanmasını sağlayarak yere ulaşmasına engel olur.



İKLİM ELEMANLARI

Bir yerin iklimi; oranın güneşlenme süresi, sıcaklık, basınç, rüzgarlar, nemlilik, bulutluluk ve yağış gibi iklim elemanlarına bağlıdır. İklim elemanları;
Ø Sıcaklık,
Ø Basınç ve Rüzgarlar,
Ø Nemlilik ve Yağış,
diye üç başlık altında incelenebilir.



SICAKLIK


İklim elemanlarının en önemlisi olan sıcaklık, diğer ik-lim elemanları temelden etkilemektedir. Örneğin yağışın oluşabilmesi için yeryüzündeki suların buharlaşıp yükselmesi ve yoğunlaşması, sıcaklığa bağlıdır.

Basınç ve rüzgarlar da sıcaklığın kontrolü altındadır. Havanın ısınıp yükselmesiyle alçak basınç alanları; soğuyup alçalmasıyla da yüksek basınç alanları oluşur. Oluşan iki farklı basınç merkezi arasındaki hava akımı da rüzgarı oluşturur.

Isı ile sıcaklık, çoğu zaman aynı anlamda kullanılan ancak birbirinden farklı kavramlardır. Bir cismin, kütlesi içinde sahip olduğu enerjinin toplam miktarına ısı denir.Isı, cisimlerin bünyesinde sahip oldukları

potansiyel enerji olup, doğrudan doğruya hissedilip ölçülemez.

Bir cismin ısısı arttığında, moleküllerin kinetik (hareket) enerjisi, yani titreşimi artar. Artan molekül titreşimleri de elektromanyetik dalgalar halinde çevreye etki yapar. İşte bu etkiye sıcaklık denir. Örneğin kömür bir enerji kaynağıdır. Isı enerjisine sahiptir ancak yanma olmadan etrafına etkide bulunmaz. Kömür yandığında içerisindeki enerji (ısı) miktarına göre çevresine sıcaklık yayar.

Sıcaklık termometreyle ölçülür ve birimi santigrat derecedir (°C). Ancak ısı doğrudan ölçülmez, onun görü-nümü olan sıcaklık yardımıyla, kalorimetre tarafından ölçülür. Birimi kaloridir (1 gram suyu 1°C yükselten enerji miktarı 1 kaloridir).

Yeryüzünde sıcaklığın kaynağı Güneş’tir. Ay’dan yansıyan, yıldızların yere gönderdiği enerji ve Yer’in iç ısısı hesaba katılmayacak kadar azdır. Örneğin, Ay’dan gelen enerjinin maksimum olduğu dolunay zamanında bile Dünya’ya ulaşan enerji, Güneş’ten gelenin 1/600.000 oranındadır. Ayrıca volkanlar ve sıcak su kaynakları ile yeraltından yeryüzüne gelen sıcaklığın, atmosferi en fazla 0,1°C arttırdığı hesaplanmıştır. Bundan dolayı yeryüzü ve atmosferin ısınmasını sağlayan enerji kaynağının yalnızca Güneş olduğunu söyleyebiliriz. Şayet güneşten gelen enerji olmasaydı yeryüzünün sıcaklığı -273.4°C olurdu.

Güneş’ten gelen enerjinin miktarı, atmosferin dış sınırında 1 cm2 ’lik yüzeye, 1 dakikada, 2 kaloridir. Buna solar konstant (Güneş sabitesi) denir. Ancak Güneş’ten atmosfere gelen bu enerjinin tamamı yeryüzüne ulaşmaz ve atmosferi ısıtmaz.

1. % 25’i atmosferin etkisiyle ve bulutlara çarparak uzaya geri yansır.
2. % 25’i atmosferde dağılmaya uğrar (difüzyon). Atmosferin mavi görünmesini ve gölge yerlerin aydınlanmasını sağlar. Bu ışınların % 9’u uzaya geri yansır, % 16’sı da yeri dolaylı olarak ısıtır.
3. % 15’i atmosfer ve bulutlar tarafından emilir (absorbsiyon).
4. % 8’i yere çarpınca uzaya yansır.
5. % 27’si doğrudan yere ulaşır ve yeri ısıtır.

Görüldüğü gibi Güneş’ten gelen enerjinin % 25’i atmosferin üst yüzeyi ve bulutlara çarparak, % 8’i de yerden yansıyarak, atmosferde herhangi bir etkide bulunmadan, doğrudan uzaya geri döner. Yansıyan bu ışınlara albedo adı verilir.

Atmosferde dağılan (difüzyon) % 25 oranındaki ışınların % 9’luk kısmı dolaylı olarak uzaya geri döner. Geri kalan % 16’lık kısım ise yere dolaylı olarak ulaşarak, ısıtır. Ayrıca yer, atmosferden % 4 oranında uzun dalgalı ışınlar da alır.

Böylece yere doğrudan ve dolaylı ulaşan enerji miktarı: 27+16+4=47 olur. Bu enerjinin % 8’i yine doğrudan doğruya uzaya geri döner. Geri kalan enerji (% 39) atmosferi uzun dalgalı ışıma, buharlaşma ve dokunmayla ısıtır.

Buna göre atmosferin yerden ısındığı enerji miktarı, atmosfer tarafından tutularak (absorbsiyon) ısıtan % 15’lik enerjiden daha fazla olmaktadır. İşte atmosferin alt katmanlarının daha sıcak olmasının nedenlerinden biri budur.

SICAKLIK ETMENLERİ
1. Güneş Işınlarının Geliş Açısı,
a. Yerin Şekli (Enlem Etkisi),
b. Yer’in Eksen Eğikliği ve Yıllık Hareketi,
c. Yer’in Günlük Hareketi,
d. Bakı ve Eğim,
2.Güneş Işınlarının Atmosferde Aldığı Yol
3.Güneşlenme Süresi,
4.Yükselti,
5.Kara ve Denizlerin Dağılışı,
6.Nem,
7.Okyanus Akıntıları,
8.Rüzgarlar,
9.Bitki Örtüsü.

1. Güneş Işınlarının Geliş Açısı: Yeryüzünde sıcaklığın dağılışını etkileyen en önemli etkendir. Güneş ışınları bir yere ne kadar dik gelirse sıcaklık o kadar yüksek, ne kadar eğik açıyla gelirse sıcaklık o kadar düşük olur.

Buna ek olarak eğik açıyla gelen ışınlar daha fazla yansımaya uğradığı için ısınmaya olan etkisi daha da azalır.

Işınların atmosfere giriş açısıyla yere ulaşan enerji miktarı, aşağıdaki tabloda gösterilmiştir.


Işınların Atmosfere Giriş Açısı

Yere Ulaşan Enerji
90°
% 75
50°
% 69
30°
% 56
10°
% 20





Güneş ışınlarının yere düşme açısını, Dünya’nın şekline, mevsimlere, günü saatine ve bakı’yagöre değişir.

a. Dünya’nın Şekli (Enlem Etkisi): Yer’in küresel şekli, yeryüzünün her noktasının aynı miktarda enerji almasına engel olur. Ekvator’dan kutuplara doğru, güneş ışınlarının yere düşme açısı küçülür.

Yer’in küresel şeklinden dolayı, güneş ışınları, ekvator ve çevresine daha dik açıyla geldiği için dar alana (A) yayılır. Böylece birim alana düşen enerji miktarı fazladır. Ekvatordan uzaklaştıkça orta enlemlerde daha geniş alana (B) yayılırken, kutup çevrelerinde en geniş alana (C) yayılır. Buralarda da birim alana düşen enerji azaldığı için sıcaklıklar daha düşük değerlerdedir.

Ekvator ve çevresi güneş ışınlarını dik ve dike yakın açılarla alırken, kutuplar daha yatık açılarla alır. Böylece sıcaklık, ekvatordan kutuplara doğru azalır. Buna enlem faktörü denir.

Enlem-sıcaklık ilişkisine aşağıdakiler örnek olarak verilebilir:
Ø Ekvatordan kutuplara doğru bitki türleri değişir ve bitki kuşakları oluşur.
Ø Denizlerin tuzluluk oranı ekvatordan kutuplara doğru azalır. Çünkü kutuplara doğru sıcaklığın azalmasına bağlı olarak buharlaşma miktarı düşer ve denizlerde tuz birikimi azalır.
Ø Kalıcı kar sınırı, tarımın ve ormanının üst sınırı ekvatordan kutuplara doğru gidildikçe alçalır.
Ø Ekvator yönünden gelen rüzgarlar sıcaklığı arttı-rırken, kutup yönünden gelen esen rüzgarlar sıcaklığı düşürür.
Ø Sıcak okyanus akıntıları ekvator yönünden, soğuk okyanus akıntıları kutuplar gönünden kaynağını alır.
Ø Türkiye’nin güney kıyıları kuzey kıyılarından daha sıcaktır.

b. Yer’in Eksen Eğikliği ve Yıllık Hareketi (Mevsimler): Yer ekseninin eğik olmasından dolayı Dünya, Güneş etrafında dolanırken, yıl içerisinde güneş ışınlarının yere düşme açısı da değişir. Bu durum sıcak-lığın yıl içerisinde farklılık göstermesine neden olur.
Ayrıca eksen eğikliğinden dolayı her iki yarım kürede, aynı anda farklı mevsimler yaşanır.

Yer ekseninin eğik olmasına bağlı olarak, her yarım küre aynı miktarda güneş enerjisi almaz. Yukarıdaki şekilde Kuzey Yarım Küre 21 Haziran’da güneş enerjisinin 7/10’unu alırken, Güney Yarımküre 3/7’sini alır. 21 Aralık’ta her iki yarım kürede bu durumun tersi yaşanır. Bu durum iki yarım kürede aynı anda farklı sıcaklık ve mevsim şartlarının yaşanmasını açık bir şekilde göstermektedir.
Yer’in Güneş etrafındaki hareketiyle birlikte, yer ekse-ninin eğik olması, gece gündüz sürelerinin mevsimden mevsime uzayıp kısalmasına neden olur. Bu da güneş-lenme süresini belirler.

c. Yer’in Günlük Hareketi (Günün saati): Dün-ya’nın küresel şeklinden dolayı, kendi ekseni etrafında dönerken, güneş ışınları sabah ve akşam yatay açılarla gelirken, öğle vaktinde gün içerisinde gelebileceği en dik açıyla gelir. Böylece sabah, öğle ve akşam vakitlerinde farklı sıcaklık değerleri oluşur.
Dünyanın ekseni etrafındaki hareketine bağlı olarak, gün içinde Güneş’in ufuk üzerindeki görünümü ve güneş ışınlarının yere düşme açısı değişir
Gün içerisinde en yüksek sıcaklık güneşin en yüksek açıyla geldiği zaman (öğle, yerel saate göre 12:00’da) gerçekleşmez. Öğleden birkaç saat sonradır. Bu durum güneşlenme süresine bağlıdır. Öğleden sonra güneşten gelen enerji, kaybedilen enerjiden daha az olduğundan sıcaklık azalmaya başlar.

Güneş battıktan sonra güneşten enerji gelmediği için sıcaklık hızla düşmeye devam eder. Gece boyunca güneşten enerji gelmediğinden, yeryüzünde enerji kaybı devam eder. Bundan dolayı, gün içerisinde en düşük sıcaklıklar, güneşin doğduğu andır.

d. Bakı ve Eğim: Yer şekillerinin sahip olduğu eğim şartları bakıyı belirler. Yamaçların eğiminden dolayı Güneş’e göre konumuna bakı denir. Bakının sıcaklık üzerinde önemli bir etkisi vardır. Dağların Güneş’e dönük yamaçları, güneş ışınlarını daha büyük açıyla alır. Ayrıca bu yamaçlarda güneşlenme süresi daha uzun olur
Bakının etkisiyle güneşe dönük yamaçlar güneş ışınlarını daha büyük açıyla alır.
Başta ışınların yere düşme açısı olmak üzere, aydınlan-ma süresinin daha uzun olması nedeniyle, Güneş’e dönük yamaçlardaki ısınma daha çok olur.
Güneşe dönük yamaçlarda güneşlenme süresi daha uzunken, diğer yamaçta güneş daha erken battığı için daha kısadır.
Bunun sonucunda güneşe dönük yamaçlarda, aynı tür bitkilerde olgunlaşma süresi daha kısadır. Buharlaşma daha fazla olduğundan, tarım ürünlerinin su ihtiyacı daha fazladır. Karlar daha erken erir. Ormanın ve tarımın üst sınırı ve kalıcı kar sınırı daha yüksektir.

Yer şekillerinin eğiminden dolayı bakının etkisiyle, Dünya’nın şekline bağlı olarak, Kuzey Yarım Küre’de, güneye bakan; Güney Yarım Küre’de ise kuzeye bakan yamaçlar daha çok ısınır.
Dönenceler dışında ki Kuzey Yarım Küre dağlarının güneye, Güney Yarım Küre dağlarının ise kuzeye bakan yamaçlarında, bakının etkisiyle sıcaklık daha fazladır.

Ancak dönenceler arasında kalan alanlarda bakının etkisi mevsimlere göre değişiklik gösterir. Buna göre yukarıda da belirtildiği üzere, güneş ışınları hangi enleme dik geliyorsa, o yöne bakan yamaçlarda bakının sıcaklık üzerindeki etkisi belirginleşir.

2. Güneş Işınlarının Atmosferde Aldığı Yol: Güneş ışınlarının atmosferde aldığı yol arttıkça, atmosferde tutulma, yansıma ve dağılma artacağından, yer yüzüne ulaşan gelen enerji miktarı azalır.

Güneş ışınlarının dik ve dike yakın açılarla geldiği Ekvator ve çevresinde, ışınların atmosferde kat ettiği yol kısa olduğu için yere ulaşan enerji miktarı fazladır. Bundan dolayı sıcaklık değerleri de yüksek olur.

Kutuplara doğru güneş ışınlarının geliş açısı daraldığı için yere ulaşan enerji miktarı da azalır. Bu nedenle kutuplara doğru, sıcaklık değerleri de düşer.
3. Güneşlenme Süresi: Güneşlenme süresi ya da aydınlanma süresi, Güneş’in gökyüzünde kaldığı süredir. Atmosferde enerji birikimini etkilediğinden, sıcaklık üzerinde önemli bir etkiye sahiptir. Güneş’in gökyüzün-de kaldığı süre arttıkça, atmosferde ısı birikimi olacağın-dan, sıcaklık değerleri artış gösterir.

Yaz aylarında sıcaklığın daha fazla olmasının nedeni güneş ışınlarının daha büyük açılarla gelmesinin yanın-da, gündüz sürelerinin uzun olması da önemli bir etken-dir. Kuzey Yarım Küre’de Güneş’ten gelen enerjinin en yüksek olduğu tarih, 21 Haziran’dır. Ancak yılın en sıcak ayı değildir. Çünkü Haziran’dan sonra, günlerin uzun olmasına bağlı olarak, her gün sıcaklık birikimi devam eder. Bu nedenle yılın en sıcak ayı, karasal iklim bölgelerinde Temmuz; nemli iklim bölgelerinde Ağustos ayına kadar sarkar.

Örneğin ülkemizde gündüz süresinin 15 saate yakın olduğu yaz günlerinde, gece süresi 9 saatten biraz daha fazladır. Gündüz 15 saate yakın enerji alınırken, gece sadece 9 saat civarında enerji kaybediyor. Bu da uzun yaz günlerinde her gün ısının biraz daha birikmesini sağlar.

Güneş ışınlarının en düşük açılarla geldiği tarih olan 21 Aralık, yılın en soğuk ayı değildir. Çünkü kış günlerinin kısa, gecelerinin uzun olmasından dolayı atmosferde sıcaklık kaybı daha fazla olur. Böylece en soğuk ay karasal iklimde ocak; nemli iklimlerde şubat ayında gerçekleşir.

de kaldığı süre arttıkça, atmosferde ısı birikimi olacağın-dan, sıcaklık değerleri artış gösterir.

Yaz aylarında sıcaklığın daha fazla olmasının nedeni güneş ışınlarının daha büyük açılarla gelmesinin yanın-da, gündüz sürelerinin uzun olması da önemli bir etken-dir. Kuzey Yarım Küre’de Güneş’ten gelen enerjinin en yüksek olduğu tarih, 21 Haziran’dır. Ancak yılın en sıcak ayı değildir. Çünkü Haziran’dan sonra, günlerin uzun olmasına bağlı olarak, her gün sıcaklık birikimi devam eder. Bu nedenle yılın en sıcak ayı, karasal iklim bölgelerinde Temmuz; nemli iklim bölgelerinde Ağustos ayına kadar sarkar.

Örneğin ülkemizde gündüz süresinin 15 saate yakın olduğu yaz günlerinde, gece süresi 9 saatten biraz daha fazladır. Gündüz 15 saate yakın enerji alınırken, gece sadece 9 saat civarında enerji kaybediyor. Bu da uzun yaz günlerinde her gün ısının biraz daha birikmesini sağlar.

Güneş ışınlarının en düşük açılarla geldiği tarih olan 21 Aralık, yılın en soğuk ayı değildir. Çünkü kış günlerinin kısa, gecelerinin uzun olmasından dolayı atmosferde sıcaklık kaybı daha fazla olur. Böylece en soğuk ay karasal iklimde ocak; nemli iklimlerde şubat ayında gerçekleşir.
4. Yükselti: Troposferde yerden yükseldikçe, her 200 metrede sıcaklık 1°C azalır. Bunun nedenleri:

1. Atmosfer, güneşten doğrudan aldığı ışınlarından çok, yer tarafından tutulan ışınların ışıması (radyasyonu) ile ısınır.
2. Sıcaklığı tutan nem, karbondioksit gibi gazların daha çok yere yakın katmanlarda yoğunlaşmıştır.
3. Ayrıca atmosferin soğuması üstten başladığından yere yakın kesimlerde sıcaklık kaybı daha azdır.

Sıcaklığın Dünya üzerinde Ekvator’dan kutuplara doğru düzenli bir şekilde azalmasını engelleyen en önemli faktör yükseltidir.

Aynı enlem üzerinde bulunan yerlerde, yükseltinin fazla olduğu yerde sıcaklık daha düşüktür.

Bir dağ yamacı boyunca yükseldikçe bitki türleri ve çeşitliliği değişir.
Yükselti aynı tür tarım ürünlerinin olgunlaşma sürelerini etkiler. Örneğin Ege Bölgesi’nde buğdayın olgunlaşma süresi İç Anadolu’dan, İç Anadolu’nun da Doğu Anadolu Bölgesi’nden daha kısadır.

Yükseklerde, atmosferdeki gaz yoğunluğu azaldığı için hava çabuk ısınıp, çabuk soğur. Bundan dolayı yükselti karasallığı şiddetlendirir.

5. Kara ve Denizlerin Dağılışı: Farklı ısınma özel-liklerine sahip olan denizler ve karalar farklı sürelerde ısınıp soğurlar. Denizler geç ısınıp, sahip olduğu sıcaklığı da geç kaybederken; karalar çabuk ısınıp çabuk soğurlar. Bu durum, aşağıdaki nedenlere bağlanabilir.

1. Denizleri oluşturan sular saydam olduğundan güneş ışınları, deniz yüzeyinden 150-200 metre derinliğe kadar yayılır ve daha büyük bir kütlenin ısınmasına sağlar. Bu da ısınmanın gecikmesine neden olur. Ancak bu büyük kütlenin sahip olduğu enerji kaybı daha geç olur.
2. Karalar güneş ışınlarını sadece yüzeyde tutar. Dokunmayla alt kısımlarına da enerji yayılır. Bu yüzden yüzeyden, ancak 20-120 cm’lik kısım ısınır. Bunun sonucunda karalar çabuk ısınır ve kazandığı enerjiyi de çabuk kaybeder.
3. Denizler güneş ışınlarının bir kısmını yansıtırken, karalar ise daha fazlasını hemen emerler.
4. Denizler hareketli olduğu için enerjisini geniş alanlara taşır. Karalar ise katı ve sabit bir yapıya sahiptir.
5. Denizler ile karaların özgül ısıları farklı olması da ısınma sürelerini ve sahip olduğu enerjiyi tutma özelliklerini etkiler.

Bütün bu sebeplerden dolayı karasal iklimlerde yaz ile kış ve gece ile gündüz arasındaki sıcaklık farkı fazladır. Denizel iklime sahip olan yerlerde ise aşırı ısınma ve soğuma görülmez. Gece ile gündüz ve yaz ile kış arasında sıcaklık farkı azdır.

Kuzey Yarım Küre’de karaların oranı fazla olması, yıllık ortalama sıcaklık değerlerinin, Güney Yarım Küre’ye oranla 2°C daha fazla olmasına sebep olmuştur.

6. Nem: Nem sıcaklığı dengeleyici bir özelliğe sahiptir. Aşırı ısınma ve soğumayı önler. Günlük ve yıllık sıcaklık farkını azaltır.

Güneş ışınlarının dik veya dike yakın açılarla geldiği Ekvator ve çevresi, Dünya’nın en sıcak yeri olması gerekir. Ancak nem miktarının fazla olması bu durumun yaşanmasını engellemiştir. Dünya’nın en sıcak yerleri, nem miktarının oldukça düşük olduğu, dönenceler civarında dinamik yüksek basınç şartları altında oluşan subtropikal çöllerdir.
Kış mevsiminde havanın bulutlu olduğu gecelerde, yerden ışıyan enerjinin, bulutlara çarparak atmosferinde kalmasından dolayı enerji kaybı azdır. Bu nedenlerle havanın bulutlu olduğu günlerde sıcaklık değerleri fazla düşmez.
Bulutsuz gecelerde, yerden ışıyan enerjiyi tutabilecek yeteri kadar nem olmadığından, sıcaklık değerleri olduk-ça düşer. Daha çok bir yüksek basınç alanının etkisi altında kalındığı günlerde oluşan bu hava şartlarında kuru soğuk, ayaz, sis, sıcaklık terselmesi, kırç, kırağı gibi hava olayları gerçekleşir.

Deniz yüzeylerinde ve alçak kesimlerde nemin ve atmosfer yoğunluğunun fazla olmasından dolayı sıcaklık kaybı az iken, yüksek dağ zirvelerinde, nem miktarı az olduğundan, sıcaklık kaybı fazladır.

Sıcaklık Terselmesi:Normal şartlarda yerden yüksel-dikçe sıcaklık azalır. Ancak bazı durumlarda, özellikle kış aylarında, yerden yükseldikçe belli bir seviyeye kadar sıcaklık artar. Bu duruma sıcaklık terselmesi (inversiyon) adı verilir. Bunun olayın iki önemli nedeni vardır.

Geceleri soğuyan hava ağırlaşarak, yeryüzündeki çukur alanlara iner. Hafif olan görece sıcak hava soğuk
Ø katmanın üzerine çıkar. Bu durumda yerden belli bir yüksekliğe kadar yükseldikçe sıcaklık artar.
Ø Gökyüzünün açık, bulutsuz olduğu kış gecelerin-de ışımayla yüksek oranda enerji kaybeden kara yüzey-leri, şiddetli soğumaya maruz kalır. Soğuk yer yüzeyine dokunan havanın alt katmanları da soğur. Bu durumda soğuk yer yüzeyi üzerinde bulunan hava kütlesinin alt katmanları üst kısımlara oranla daha sıcak olur.

Durgun hava ortamında oluşan sıcaklık terselmesi, kış mevsiminde şehirlerde hava kirliliğinin artmasına neden olarak, insan sağlığını tehdit eder. Ayrıca vadi ve ova tabanlarındaki tarım alanlarında, şiddetli don olayının yaşanmasına neden olduğu için tarım ürünlerinin verimliliğini olumsuz yönde etkiler

7. Okyanus Akıntıları: Okyanus akıntılarının yeryüzünde sıcaklığın dağılışı üzerindeki etkisi, küçümsenmeyecek kadar önemlidir. Okyanus akıntıları, denizlerde sıcaklığın Ekvator’dan kutuplara doğru düzenli bir biçimde azalmasını engeller.

Ekvator ve çevresinden kaynağını alan okyanus akıntıları sıcak su akıntıları olup, geçtiği kıyıların havasını yumuşatır ve ısınmasını sağlar.

Kutuplar ve çevresinden kaynağını alan okyanus akıntıları ise soğuk su akıntıları olup, geçtikleri kıyıların havasının soğumasına neden olur.

Örneğin, Kuzeybatı Avrupa kıyılarının ocak ayı ortalama sıcaklığı Gulf Stream sıcak su akıntısının etkisi ile 2-3°C iken, aynı enlemde yer alan Kanada’nın doğu kıyılarının ocak ayı sıcaklık ortalaması, Labrador soğuk su akıntısından dolayı -20°C’ye kadar düşer.
8. Rüzgarlar: Rüzgarların oluşum merkezi ve esme yönü de sıcaklık üzerinde doğrudan etkilidir. Rüzgarlar geldikleri bölgelerin sıcaklık, nem v.b özelliklerini, estikleri bölgelere taşırlar.

Ekvator ve çevresinden kaynağını alan rüzgarlar, geçtikleri yerlerin sıcaklığını arttırırken, kutuplar ve çevresinden kaynağını alan rüzgarlar, geçtikleri yerlerin sıcaklık değerlerini düşürürler.

Bu durumda Kuzey Yarım Küre’de güneyden esen rüzgarlar; Güney Yarım Küre’de ise kuzeyden esen rüzgarlar sıcaklık değerlerini arttırırlar. Buna karşın Kuzey Yarım Küre’de kuzeyden esen rüzgarlar; Güney Yarım Küre’de güneyden esen rüzgarlar sıcaklığı düşürür. Bu durum enlem-sıcaklık ilişkisine bir örnektir.
Denizden karaya doğru esen rüzgarlar kışın ılıtıcı, yazın ise serinletici etki yaparlar. Karalardan denize doğru esen rüzgarlar ise kışın soğutucu, yazın sıcaklığı arttırıcı etkiler yapar.

9. Bitki Örtüsü: Bitki örtüsü, gündüzleri yerin fazla ısınmasını ve topraktaki suyun buharlaşmasını engeller. Geceleri ise bitkiler yerden ışımayı azaltarak, soğumayı yavaşlatır. Bunun için bitki örtüsü sıcaklık değişimini azaltan bir etkide bulunur.

Ayrıca bitki örtüsü terleme yoluyla havadaki nem miktarının biraz artmasına neden olur. Bunlara bağlı olarak, ormanlık alanlarda gece ile gündüz arasındaki sıcaklık farkı az; çıplak arazilerde ise daha fazla olur.
 
Facebook beğen
 
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol